Inhibition of Hsp 90 Function by Ansamycins Causes Retinoblastoma Gene Product - dependent G 1 Arrest 1
نویسندگان
چکیده
The ansamycin antibiotics, herbimycin A (HA) and geldanamycin (GM), bind to a conserved pocket in heat shock protein 90 (Hsp90) and alter the function of this chaperone protein. Occupancy of this pocket results in the degradation of a subset of signaling molecules. These include proteins known to associate with Hsp90, e.g., the steroid receptors and Raf, as well as certain transmembrane tyrosine kinases, such as the ErbB receptor family. In a variety of tumor cell lines, treatment with HA potently inhibited cellular proliferation by inducing G1 arrest. This arrest was accompanied by hypophosphorylation of the retinoblastoma gene product (RB) and rapid down-regulation of cyclin Dand E-associated kinase activities. Inhibition of kinase activity was found to result from loss in expression of cyclins D1, D3, and E, as well as the associated cyclindependent kinases, cyclin-dependent kinase 4 and cyclin-dependent kinase 6. In addition, HA treatment also caused a late induction of p27 protein. The loss of cyclin D preceded the other effects of HA, suggesting that it might be the primary cause of G1 arrest. To determine whether the effects of HA are mediated by selective inhibition of the cyclin D-RB pathway, HA was added to tumor cell lines lacking functional RB. HA treatment of Rb-negative tumor cell lines failed to elicit a G1 arrest. In addition, after release from synchronization with nocodazole, Rb-negative but not Rb-positive cell lines were able to progress through G1 into S phase in the presence of HA. Together, these findings suggest that induction of G1 arrest by HA results from down-regulation of cyclin D expression and its associated kinase activity. Furthermore, these findings imply that Hsp90 selectively regulates signaling pathways upstream of RB.
منابع مشابه
Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells.
17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) is an ansamycin antibiotic that binds to a conserved pocket in Hsp90 and induces the degradation of proteins that require this chaperone for conformational maturation. 17-AAG causes a retinoblastoma (RB)-dependent G1 block in cancer cells and is now in clinical trial. In breast cancer cells, G1 block is accompanied by differentiation and followe...
متن کاملMolecular mechanism of endothelial growth arrest by laminar shear stress.
This study was designed to elucidate the mechanism underlying the inhibition of endothelial cell growth by laminar shear stress. Tumor suppressor gene p53 was increased in bovine aortic endothelial cells subjected to 24 h of laminar shear stress at 3 dynes (1 dyne = 10 microN)/cm(2) or higher, but not at 1.5 dynes/cm(2). One of the mechanisms of the shear-induced increase in p53 is its stabiliz...
متن کاملCancer Therapy: Preclinical Antitumor Activity of SNX-2112, a Synthetic Heat Shock Protein-90 Inhibitor, in MET-Amplified Tumor Cells with or without Resistance to Selective MET Inhibition
Purpose: Heat shock protein-90 (HSP-90), a molecular chaperone required by numerous oncogenic kinases [e.g., HER-2, epidermal growth factor receptor (EGFR), Raf-1, v-Src, and AKT] for conformational stability, has attracted wide interest as a novel target for cancer therapy. HSP-90 inhibition induces degradation of HSP-90 client proteins, leading to a combinatorial inhibition of multiple oncoge...
متن کاملAntitumor activity of SNX-2112, a synthetic heat shock protein-90 inhibitor, in MET-amplified tumor cells with or without resistance to selective MET Inhibition.
PURPOSE Heat shock protein-90 (HSP-90), a molecular chaperone required by numerous oncogenic kinases [e.g., HER-2, epidermal growth factor receptor (EGFR), Raf-1, v-Src, and AKT] for conformational stability, has attracted wide interest as a novel target for cancer therapy. HSP-90 inhibition induces degradation of HSP-90 client proteins, leading to a combinatorial inhibition of multiple oncogen...
متن کاملArrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription.
The p53-inducible gene PC3 (TIS21, BTG2) is endowed with antiproliferative activity. Here we report that expression of PC3 in cycling cells induced accumulation of hypophosphorylated, growth-inhibitory forms of pRb and led to G(1) arrest. This latter was not observed in cells with genetic disruption of the Rb gene, indicating that the PC3-mediated G(1) arrest was Rb dependent. Furthermore, (i) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000